

 Navigation

 	
 index

 	gbulb latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a ./index.rst or ./README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	gbulb latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/file.png

_static/ajax-loader.gif

_static/plus.png

README.html

 Navigation

 		
 index

 		gbulb latest documentation »

gbulb - a PEP 3156 event loop based on GLib

Gbulb is a Python library that implements a PEP 3156 [http://www.python.org/dev/peps/pep-3156/] interface for
the GLib main event loop [https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html] under UNIX-like systems.

The code needs to be thoroughly tested, it should be considered as unstable for
the moment.

Anthony Baire

Licence

Apache 2.0

Homepage

https://bitbucket.org/a_ba/gbulb

Requirements

		python3.4 or python3.3+asyncio [https://pypi.python.org/pypi/asyncio]

		pygobject

		glib

		gtk+3 (optional)

Usage

GLib event loop

 import asyncio, gbulb
 asyncio.set_event_loop_policy(gbulb.GLibEventLoopPolicy())

Gtk+ event loop (suitable for GTK+ applications)

 import asyncio, gbulb
 asyncio.set_event_loop_policy(gbulb.GtkEventLoopPolicy())

GApplication/GtkApplication event loop

 import asyncio, gbulb
 asyncio.set_event_loop_policy(gbulb.GApplicationEventLoopPolicy())

 loop = asyncio.get_event_loop()
 loop.run_forever(application=my_gapplication_object)

Known issues

		Windows is not supported, sorry. If you are interested in this, please help
me get it working! I don’t have Windows so I can’t test it.

Divergences with PEP 3156

In GLib, the concept of event loop is split in two classes: GLib.MainContext
and GLib.MainLoop.

The thing is mostly implemented by MainContext. MainLoop is just a wrapper
that implements the run() and quit() functions. MainLoop.run() atomically
acquires a MainContext and repeatedly calls MainContext.iteration() until
MainLoop.quit() is called.

A MainContext is not bound to a particular thread, however it cannot be used
by multiple threads concurrently. If the context is owned by another thread,
then MainLoop.run() will block until the context is released by the other
thread.

MainLoop.run() may be called recursively by the same thread (this is mainly
used for implementing modal dialogs in Gtk).

The issue: given a context, GLib provides no ways to know if there is an
existing event loop running for that context. It implies the following
divergences with PEP 3156:

		.run_forever() and .run_until_complete() are not guaranteed to run
immediately. If the context is owned by another thread, then they will
block until the context is released by the other thread.

		.stop() is relevant only when the currently running Glib.MainLoop object
was created by this asyncio object (i.e. by calling .run_forever() or
.run_until_complete()). The event loop will quit only when it regains
control of the context. This can happen in two cases:
		when multiple event loop are enclosed (by creating new MainLoop
objects and calling .run() recursively)

		when the event loop has not even yet started because it is still
trying to acquire the context

It would be wiser not to use any recursion at all. GLibEventLoop will
actually prevent you from doing that (in accordance with PEP 3156), however
GtkEventLoop will allow you to call run() recursively. You should also keep
in mind that enclosed loops may be started at any time by third-party code
calling directly GLib’s primitives.

TODO: documentation about signal GLib allows catching signals from any
thread. It is dispatched to the first handler whose flag is not yet raised.

about SIGINT -> KeyboardInterrupt will never be raised asynchronously

 © Copyright .
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		gbulb latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/comment-bright.png

_static/comment-close.png

